domingo, 11 de setembro de 2011


 Acesse o link acima e mote seu OPALA virtual, muito bem feito.

PREPARAÇÃO MOTOR 6 CILINDROS

O motor GM 250 é extremamente capaz de gerar grandes potências quando bem preparado.


 
Preparações leves quando bem executadas ficam excelentes para os “carros de rua”, onde a dirigibilidade e a durabilidade não são prejudicadas, proporcionando emoção e segurança aos Opalas e Caravans. Para os mais “apetitosos” o GM 250 pode gerar mais de 1100 cavalos em preparações super-pesadas.A todos vocês que possuem ou gostam do 250 sejam vem vindos, ficamos a sua disposição para o esclarecimento de qualquer dúvida, basta entrar em contato.
Preparar um motor destinado ao alto desempenho é muito mais que colocar peça renomadas de alta performance, requer um alto conhecimento técnico sobre a mecânica, e saber como combinar os componentes corretamente para proporcionar o resultado ideal. Como já dissemos em outras edições, não adianta sair comprando tudo quanto é peça a qual são denominadas "melhores", ou mesmo as que outros preparadores utilizam, cada motor reage diferentemente a cada proposta de preparação, e por isso, cada caso é um caso em particular.
Os motores GM 250 "nascem" com um desempenho medíocre para uma capacidade cúbica deste porte. O maior culpado no desempenho pobre deste motor se refere a "respiração". O minúsculo carburador somado ao cabeçote estrangulado e o comando de válvulas de pequena duração são os vilões destes motores, que quando bem preparados podem surpreender em termos de ganho de potencia e torque. O que faremos nesta matéria é mostrar aos nossos leitores o que realmente funciona nos motores GM 250 em termos de preparação, inclusive apontarei os maiores enganos que sempre encontro na preparação dos mesmos.
 

Cabeçote

A GM produziu 4 modelos distintos de cabeçotes durante os anos de vida do motor 250, três modelos para os motores 6 cilindros que eram utilizados nos Opalas, Caravans e camionetes, a gasolina e álcool, e o último modelo utilizado nos Omega 4.1, este ultimo, possui a vantagem do fluxo dividido na admissão, mas é mais restrito ao trabalho dos dutos e o resultado em banco de fluxo fica um pouco inferior ao "normal" em casos de preparações mais pesadas. Deste modelo especifico falaremos em outra edição.
A principal diferença entre estes modelos e a espessura do material utilizado na fundição e capacidade da câmara de combustão. Não enchendo lingüiças, o único cabeçote que realmente presta para os motores 6 cilindros de altíssimo desempenho, aspirados, turbinados ou com grandes doses de oxido nitroso são os de numero de serie final 586, encontrados em alguns modelos de 1989 a 1992, inclusive nos motores das camionetes. Eu particularmente utilizo este tipo de cabeçote em preparações pesadas de motores turbo alimentados, nitros ou aspirados específicos para competições. Este cabeçote possui uma pequena desvantagem no volume elevado (para um motor aspirado) das câmaras de combustão - que pode ser corrigido facilmente, mas em compensação possuem em media uma parede de 7,8 mm na face inferior, que alem de dar resistência ao cabeçote evitando rachaduras entre os cilindros e na parte das câmaras de água -, a parte superior onde as molas são apoiadas também possuem uma parede mais espessa, proporcionando major flexibiLidade no acerto da geometria do trem de válvulas. Lembre-se que, quando alteramos a altura do cabeçote ou bloco por intermédio do rebaixamento devemos estar atentos a geometria de todo o trem de válvulas, que inclui varetas, balanceiros, molas, prisioneiros, válvulas, travas e o orifício por onde as varetas operam, que deve ser aumentado em seu comprimento linear. Um ponto que também requer muita atenção é a divisão dos dutos de admissão do cabeçote por onde passa o parafuso que o prende ao bloco. Muitos costumam retirar a coluna divisória e fazer a fixação direta na parte inferior, o que aumenta o volume, mas não aconselho, pois em alguns testes que fiz na bancada de fluxo pude constatar que para um motor naturalmente aspirado a cabeça do parafuso de fixação causa uma turbulência gigantesca no fluxo, sendo a melhor opção afinar a parede e manter a fixação original. Deixar um angulo de ataque extremamente fino a Linear na coluna também favorece o ganho e a divisão do fluxo. Nada substitui um excelente trabalho no cabeçote, a feito por pessoas competentes o ganho e monstruoso.
 

Câmara de Combustão

Uma unanimidade em todos os cabeçotes dos motores 250 e a diferença entre as câmaras de combustão, que podem chegar a mais de 5cc de uma para outra. Diferenças entre o volume das câmaras são mortais a qualquer tipo de proposta esportiva de um motor, pois havendo diferenças, cada cilindra trabalha com uma determinada taxa de compressão produzindo diferentes forcas aplicadas nos colas das bielas do virabrequim, a que irá resultar em um desempenho pobre no ganho de potência chegando a causar vibrações na movimentação do virabrequim. É importante salientar aos leitores que equalizar as câmaras também tem seus macetes, onde e como tirar o material metálico é o grande segredo, mas isso requer uma matéria específica sobre a preparação deste cabeçote. O desenho da câmara de combustão pode e deve ser alterado quando a motor for devidamente preparada para competição, principalmente quando se utiliza turbo, nitro ou grandes quantidades de nitro-metano adicionado ao metanol.
Os cabeçotes de numero final 831 possuem dois tipos de capacidade na câmara de combustão, uma com 55cc nos modelos a álcool e 72cc nos modelos a gasolina. Os modelos 831 (acima de 1974) e 881 (abaixo de 1974 e com 72cc) podem ser utilizados em preparações leves onde o rebaixamento do cabeçote é limitado a somente 2,7mm, jamais ultrapasse estes valores no rebaixamento da peca, pois existe um grande risco de aparecerem rachaduras na face do cabeçote ande se localizam as câmaras de passagem da água, principalmente quando a motor é aquecido. O cabeçote de numero final 586 (50 em 72cc) permite o rebaixamento em ate 6mm, fazendo em angula onde se inicia com 6mm na parte das velas caindo para 5,0mm na parte de entrada e saída das câmaras. Caso não queira fazer a rebaixamento angular você pode baixar 5 mm linearmente com segurança. Em motores turbo alimentados de extrema potencia não é aconselhável o rebaixamento deste cabeçote 586, muito menos nos 831 que devem ate serem evitados em preparações mais pesadas.

Taxa de compressão

Um fator importantíssimo no projeto inicial do motor é a taxa de compressão. O erro mais comum é escolher comandos de grande duração para trabalharem com taxas de compressão pequenas. Comandos gigantes exigem grandes carburadores, cabeçotes extensivamente preparados, escapamentos livres e altas taxas de compressões. Motores de uso diário com comandos leves (leia sobre comandos mais abaixo) movidos a álcool devem operar com taxas de compressão entre 12,0:1 a 13,2:1, que podem ser conseguidas em qualquer tipo de cabeçote, inclusive com o rebaixamento do bloco em ate 2mm, o que pode requerer uma atenção especial a geometria do trem de válvulas já que a posição dos balanceiros será modificada. Motores naturalmente aspirados movidos a álcool, que se destinam a competições, devem operar com taxas superiores a 14,0:1 a até 14,8:1, e só com os cabeçotes 586. Os motores movidos a Metanol devem operar entre 15,0 a 16,8:1 e estas taxas de compressão só são alcançadas utilizando pistões do tipo "dome", Os comumente chamados de "cabeçudos" aliados ao cabeçote 586 devidamente rebaixado e preparado.
 

Válvulas

As válvulas originais que equipam todos os cabeçotes do motor 250 possuem os seguintes diâmetros: 45 mm na admissão x 38 mm nas Válvulas de escapamento, com hastes de 8,64 mm. A relação de válvulas do motor original já é muito pobre para uma capacidade cúbica deste porte, imaginem em um motor para alto desempenho. Utilizar válvulas maiores tanto na admissão quanto no escapamento e uma obrigação, principalmente porque um simples milímetro em uma válvula já trabalhada pode render mais de 8 CFM de resultado de fluxo na admissão e mais de 5 CFM nas válvulas de escapamento. Isso porque estou citando válvulas com hastes de diâmetro original, nas de alta performance onde temos a "tulipa" mais fina o ganho é ainda maior.
Em termos de preparações econômicas a substituição das válvulas de admissão pelos modelos vindos do caminhão Chevrolet Brasil da GM, mais precisamente com diâmetro de 48mm, favorece muito a respiração dos cilindros. Uma boa relaçãoo de válvulas para os mais necessitados de performance é utilizar válvulas importadas Manley, com relação de 49,2mm x 40m. Fique atento aos modelos destas válvulas, a Manley fornece seis modelos diferentes para aço inoxidável: Budget séries com dois modelos “econômicos", Street séries, Race séries, Severe duty e Extreme Duty, que no caso dos motores GM a melhor opção recai sobre a Race séries, feitas com aço inoxidável de alta resistência ( XH-426 nas válvulas de escapamento e NK-842 nas válvulas de admissão ), alem disso o que diferencia das demais é o desenho da tulipa que é mais fino logo depois do locaL de alojamento (guia) e o polimento em forma de "furacão", que favorece o fluxo. O ganho na utilização deste modelo de válvulas é gigantesco em termos de fluxo e resistência a altos regimes de rotação. Existe a possibilidade de se utilizar válvulas de diâmetro ainda maior; mas o risco de alcançar as galerias de passagem da água e grande, principalmente na bolsa onde ficam alojadas as sedes. As válvulas com diâmetro de 51.33mm podem ser utilizadas em conjunto com as válvulas de 40mm, mas fique atento na preparação do cabeçote. Já cheguei a utilizar em determinadas preparações válvulas de escapamento gigantes, com 45mm, mas mantendo a admissão com no máximo 49,2mm. Digo caso especial em motor de competição com altas doses de oxido nitrosa ou mesmo turbo comprimido, é a relação de válvulas que ire utilizar no monstrinho que estou fazenda onde a quantidade de oxido nitroso poderá ultrapassa a casa dos 350 cavalos e o motor precisa eliminar a quantidade de resquícios da queima com grande volume e velocidade.
As vantagens das válvulas de aço inoxidável são imensamente maiores que as válvulas originais. Durabilidade, resistência aos altos regimes de rotação, poder de controle térmico e a ganho em fluxo são incontestáveis em relação as originais. O trabalho dos ângulos também é importante, nas válvulas a melhor opção é trabalhar com 45 graus no assentamento, 30 graus e ainda mais um recorte de 23 graus para finalizar. Nas sedes 15 graus, 45 graus no assentamento e a final com 60 graus ficam excelentes em termos de velocidade e ganha de fluxo. Todo cuidado é pouco quando utilizar as válvulas grandes, principalmente nas bolsas onde ficam alojadas as sedes, portanto, só um profissional gabaritado pode fazer o serviço com competência para o aproveitamento completo do aumento do dia metro das válvulas. E também temos a problema da geometria entre a enquadramento do comando em relação ao ponto máximo superior dos pistões, principalmente quando rebaixamos o cabeçote e o bloco do motor para conseguir o aumento da taxa de compressão.
Nos motores mais apetitosos em termos de potencia e que trabalhem em faixas de giros acima de 7500 rpm as válvulas de titânio, somados aos pratos e travas do mesmo material são essenciais, pois o baixo peso aliado a estrutura do titânio são fundamentais em motores que giram muito alto.
 

Pratos e Travas

Um bom conjunto do trem de válvulas deve possuir uma perfeita combinação entre os componentes, a quantidade e simetria dos pratos e travas são importantíssimas para o funcionamento perfeito do conjunto. Uma trava de má qualidade, de ângulo diferente no assentamento ou mesmo os pratos "diferentes" causam anomalias e podem destruir um motor. Entre as "anomalias" temos o controle das pressões das molas que também podem causar danos ao motor. Para motores de rua que a rotação máxima não supere os 5000 giros o equipamento original é bem aceito. No caso de motores mais capazes a instalação de travas de alta resistência e pratos mais leves e também mais resistentes é obrigatória. Fique atento a checagem de todas as travas em relação ao recorte das válvulas e ao ângulo de fechamento, que deve ser idêntico ao ângulo do prato. Os pratos devem ser idênticos em relação aos seus apoios, alturas e diâmetros, jamais monte as válvulas molas com pratos diferentes, mesmo os originais que apesar de aparentemente serem iguais existem diferenças ente os modelos de 4 cilindros, e os três modelos dos seis cilindros. Outro fator de extrema importância é checar se o prato não ficará próximo do assentamento da guia da válvula, este fator é um destruidor de comandos. Jamais coloque um comando de válvulas com levante superior a 11,8 mm sem fazer o devido trabalho nas guias de válvulas ou escolher os pratos corretos para esta aplicação. A folga mínima entre o prato e guia na posição de levante máximo é de 2,5 mm.
 

Varetas

Toda estrutura e aplicação de força caem sobre as varetas de acionamento. As varetas originais agüentam o esforço ate 5000 giros, mas não suportam o menor desaforo em um eventual "erro" na troca de marchas, entortando com facilidade.
Para motores que girem acima das 5000 rotações por minuto a substituição das varetas e obrigatória, bem quando utilizar um comando de válvulas com levante acima de 13 mm. Fiquem atentos a geometria dos balanceiros quando utilizar um comando de válvulas mais nervoso, principalmente em comandos onde o levante supere os 13 mm. As varetas utilizadas nos motores da Silverado são mais resistentes que as originais do motor 250, são mais espessas e de diâmetro maior. Para a instalação das varetas será necessária a modificação nos canais do cabeçote por onde passam as varetas. O aumento dos canais deve ser feito com muita atenção, pois qualquer desvio ou mesmo diâmetro maior do que o necessário faz com que as varetas fiquem "sambando" dentro dos canais, e isso pode causar diferenças nas folgas do ajuste de válvulas na melhor das hipóteses. As varetas da Silverado agüentam rotações de até 6500 rpm sem apresentar problemas. Para motores de preparação super-pesada onde o giro pode ser superior a 6500 é necessário a substituição das varetas por modelos feitos em Cr-Mo, especiais para motores de competição. É Importante salientar aos leitores que o comprimento da vareta é que determina o posicionamento correto do balanceiro, e comprar o conjunto correto é a melhor forma de evitar erros. Cada balanceiro possui uma determinada configuração para trabalhar em conjunto com a vareta, portanto na hora de comprar os balanceiros certifique-se a as varetas são de geometria correta a todo o trem de válvulas.
 

Balanceiros

Os balanceiros sofrem um bocado nos motores de alta performance, são eles que recebem o levante do comando pelos tuchos e varetas, abaixando as válvulas, sofrendo com a carga das molas. Porrada por todos os lados. Cada aplicação especifica pode indicar um determinado balanceiro, principalmente na escolha correta do comando de válvulas. Cada balanceiro em particular possui uma medida que é a razão de multiplicação, isto é, quando escolhermos um comando de válvulas devemos verificar o levante em relação ao balanceiro. Nos modelos importados isso já vem descrito na papeleta de especificação do comando. Para exemplificar melhor, se o levante do comando possui 7 mm, e já especificado que com um balanceiro de 1.60 ele abaixará a válvula em 11,20 mm (levante efetivo). Já com um balanceiro de razão de 1.75 as válvulas possuirão uma abertura de 12,25 mm. E se utilizarmos os balanceiros de 1.80 teremos 12.60 mm de levante. Cuidado na escolha dos balanceiros, ás vezes, dependendo da quantidade de material retirado do cabeçote e bloco, um balanceiro com razão muito grande pode fazer com que as válvulas se encontrem com os pistões, guias ou até mesmo sair da posição correta de assentamento na cabeça da válvula, principalmente em uma flutuação. É importante citar aos leitores que uma válvula jamais pode ficar mais do que 2,5 mm de distancia dos pistões com o comando adiantado e atrasado a 4 graus.
Existem dois tipos de balanceiros para o motor 250, os com acionamento direto e os que possuem rolamentos. Os balanceiros de acionamento direto possuem o mesmo desenho do original de razão 1.60 e podem ser encontrados com razões de até 1.75, mas não são indicados para motores mais sérios. Já os balanceiros "roller" são indicados em todos os tipos de aplicação, pois alem da óbvia redução de fricção do rolamento, o peso dos modelos feitos em alumínio é reduzidíssimo, proporcionando uma excelente estabilidade do trem de válvulas em altos regimes de rotações. Os balanceiros do tipo "roller" possuem diversas configurações de razão e off-set, cada caso deve ser estudado em particular para a indicação dos mesmos. Um balanceiro "Roller" barato e feito em aço traz resultados melhores do que um "normal" em aço estampado, mas inferior a um balanceiro em alumínio. Balanceiros para os motores 250 podem ser encontrados com razões de multiplicação de ate 1.85.0 ganho de potencia só na instalação de um conjunto de balanceiros pode chegar até 3% da potencia total do motor. Na hora da compra fique atento a medida correta dos prisioneiros dos balanceiros, comprar um balanceiro com furo 3/8 para trabalhar em um prisioneiro 7/16 não funciona.
 

Molas

Para este que Ihes escreve todos os meses as molas de válvulas são os componentes mais importantes do conjunto pertencente ao comando de válvulas. A importância do sistema de molas de válvulas em um motor de competição extremamente séria, principalmente nos motores de competição. As molas controlam a estabilidade do movimento de abertura e fechamento das válvulas, um simples erro na escolha pode acarretar não só prejuízos a performance do motor, mas danificá-lo seriamente. Um bom conjunto de molas deve proporcionar um controle total e preciso na abertura e fechamento das válvulas em todos os regimes de operação do motor, e ser ultra resistente a fadiga.
Um motor que possui proposta para alcançar altos regimes de rotação necessita de uma estabilidade incrível no controle das válvulas, pois molas desequilibradas entre si fazem com que cada cilindro receba diferentes porções de mistura e esvaziamento da câmara de combustão. Molas erradas causam uma bagunça enorme no fluxo do cabeçote, o que afeta diretamente na potencia do motor.
Molas demasiadamente "moles" fazem com que as válvulas tenham o efeito de "flutuação" em altos índices de rotações, o que pode destruir um motor e todo o seu investimento, pois não conseguem fechar e abrir as válvulas durante a permanência de abertura e fechamento do comando causando choques e vibrações perigosas. Molas demasiadamente duras podem destruir os ressaltos do comando de válvulas e causar anomalias na freqüência de abertura e fechamento das mesmas. O mais importante de salientar aos nossos leitores e que cada assentamento das válvulas do cabeçote do motor 250 possui diferenças grotescas de altura, o que faz com que cada mola tenha uma resistência diferente em cada cilindro ou válvula. Você pode adquirir um jogo de molas espetacular, com tudo dentro dos conformes da preparação, mas isso nada vai adiantar se você não tiver os parâmetros de cada assentamento e saber corrigir as cargas de pressão das molas de acordo com o seu cabeçote. A correção pode ser feita de duas maneiras ou utilizando as duas ao mesmo tempo, acrescentar calcos para corrigir a diferença de valor entre as molas e usinando os assentamentos das molas para permitir o funcionamento correto das mesmas. Para isso, você deve medir a pressão de cada mola em relação a altura da mesma entre o limite máximo e mínimo, isto é, com as válvulas montadas elas devem possuir as mesmas características de extensão e pressões em posição totalmente aberta bem como no levante máximo do comando. Um fato importante é que os elos das molas não podem estar fechados por completo quando o levante do comando estiver em seu ponto máximo, e cada fabricante de mola recomenda a posição, espaço entre elos, folga e pressões em cada kit. A grosso modo o espaço mínimo entre os elos das molas na posição de levante máximo do comando não pode ser inferior a 3.5 mm, isso pode variar de acordo com cada fabricante ou tipo de mola, mas serve para a grande maioria de aplicações. O que vai determinar o tipo correto de mola é o comando de válvulas, e ler o manual é o melhor caminho para um bom funcionamento do seu conjunto. As molas do antigo 250-S funcionam bem até 5500 rpm quando devidamente acertadas, e caso a opção seja para um comando que gire até 6500 rpm as molas Isky modelo 6005 controlam bem a situação, para motores mais valentes que girem até 7500 rpm as molas Crane 99893-12 e as Crower 68396-3B são excelentes opções. Para os motores de competição que possuem altíssimos índices de rotações acima de 7500 rpm é necessário um estudo delicado em relação as molas de válvulas e todos os componentes do trem.

Tuchos

Existem quatro modelos diferentes de tuchos que podem ser utilizados nos comandos de válvulas para o motor 250. Os mais comuns são os mecânicos e hidráulicos, mas temos também comandos de válvulas que atuam com tuchos "roller" também hidráulicos e mecânicos.
 

Tuchos hidráulicos

Os tuchos hidráulicos originais não funcionam bem acima de 4500 rpm e tendem a "esvaziar" quando o motor é utilizado esportivamente, equiparam a maioria absoluta dos motores de 250 polegadas (4100cc). Existem tuchos hidráulicos melhores que os originais fabricados por empresas famosas como a Iskenderian, Crane, Crower e a Competition Cams. A grande diferença destes modelos é que suportam mais abusos de rotações e temperatura sem perder a pressão de óleo interna nos tuchos, agüentando a utilização esportiva até 6000 rpm em alguns modelos. A grande vantagem em utilizar os tuchos hidráulicos é o silêncio de operação, pois a folga é zero, deixando o motor mais "crespo" e rápido nas respostas, principalmente em baixas e médias rotações.
 

Tuchos Mecânicos

Os tuchos mecânicos originais equiparam os famosos e idolatrados 250-S movidos a gasolina. O ruído característico no funcionamento do motor é justamente causado pela folga necessária para o ajuste. Os tuchos mecânicos originais GM e os fabricados pelas empresas de performance possuem as mesmas características de operação e rendimento, isto é, podem ser utilizados sem problemas em motores que giram estratosféricos 8000 rpm. São os mais indicados para os motores de alto desempenho.
 

Tuchos hidráulicos do tipo "Roller"

Apesar de ser difícil encontrar comandos de válvulas do tipo "roller" e hidráulico para os motores GM 250, este tipo de tucho é extremamente bem vindo em um motor de rua com propostas serias de performance, pois aliam o modo silencioso de funcionamento, quase uma ausência de ajustes periódicos e grandes vantagens da folga quase 0 no ajuste. Funcionam bem até 7000 rpm e proporcionam respostas ultra-rápidas.
 

Tuchos Mecânicos do tipo "Roller"

Estes são o supra-sumo dos tuchos. Conseguem aliar a performance do tucho mecânico em termos de rpm e proporcionar uma redução gigantesca no atrito. Só para termos de comparação, se temos um comando de válvulas do tipo mecânico com tuchos "normais" também mecânicos, e o compararmos com um comando de válvulas com as mesmas graduações e levantes, mas do tipo Roller, teremos um ganho superior a 5% de potencia. Um bom conjunto de tuchos do tipo "roller" deve ser escoLhido a dedo pelo preparador para fazer o conjunto perfeito com o comando de válvulas, principalmente em relação ao Offset do posicionamento das varetas, que também são especiais para estes modelos. Podem funcionar perfeitamente ate 10.000 rpm, falta só fazer o motor girar tudo isso.
 

Comandos de Válvulas

Nos motores 250 o que mais responde em termos de potencia e torque são as mudanças no comando de válvulas. Originalmente os motores 250 vinham equipados com dois modelos distintos de comandos. O primeiro e mais comum é o modelo que funcionava com tuchos hidráulicos, e possuía a duração de enquadramento a 0.050 com modestos 184 graus. Já o comando que equipava os modelos 250-S com tuchos mecânicos possuíam a duração de 202 graus a 0.050. Na verdade, o ganho na troca do modelo hidráulico pelo mecânico acrescentava mais de 10 cavalos ao motor de 250 polegadas.
Existe uma grande confusão no mercado sobre os comandos de válvulas, principalmente quando comparamos a duração entre as marcas disponíveis no mercado. Jamais compre ou compare um comando de válvulas analisando a duração bruta, sempre procure saber a duração a 0.050 para comparar e saber o funcionamento do comando. Se você procura andar com carburador original e devidamente calibrado procure comandos de válvulas hidráulicos ou mecânicos com duração a 0.050 operando entre 204 graus a 228 graus (em caso de assimétricos com a duração de admissão ate 210 graus), lembre-se que quanto maior a duração mais o carro responde em alta rotação e perde torque em baixa rotação. Durações acima de 210 graus já fazem o motor 250 "pipocar" na marcha lenta utilizando carburador de duplo corpo, em caso de injeção eletrônica ou mesmo a utilização de múltiplos carburadores a chance de corrigir a marcha lenta é melhor e a parte "baixa" e muito melhor.
Comandos com duração a 0.050 acima de 228 graus até 234 graus (força entre 2000 a 5500 rpm) já partem para os tuchos mecânicos e uma relação mais esportiva, exigindo em alguns casos o aumento da taxa de compressão (álcool em 12,0:1 mínimo), carburadores maiores em relação ao CFM e relação de diferencial mais curta, que neste caso o ideal e ficar entre a 3.07 e 3.54. Comandos de válvulas mecânicos com duração entre 234 graus e 248 graus (força entre 2500 a 6000 rpm) são indicados para carburadores grandes, como uma Weber 44 ou 48, ou até mesmo um Holley de 600 CFM. Exigem taxas de compressão acima de 13,0:1 (álcool) e relação de diferencial de 3.54:1, com modificações leves no cabeçote, principalmente em relação ao tamanho das válvulas. Estes comandos são mais indicados para competições de finais de semana em percursos curtos de até 300 metros. Comandos mais sérios que operam acima de 250 graus a 0.050 a atá 260 graus preferem múltiplos carburadores (grande capacidade de CFM), taxas de compressão acima de 14,0:1, cabeçotes de competição, balanceiros "Roller'., varetas especiais, e componentes internos do motor para trabalhar entre 3500 a 7300 rpm. São comandos indicados para competição. Já os comandos de válvulas com angulo de permanência acima de 260º a 0.050" são super nervosos e de uso específico em competição, necessitam de taxas de compressão acima de 14,0:1 (álcool) ou 16,5:1 (metanol) e só limpam com o pé em baixo.

Comandos para competições

Existe um pequeno problema entre os competidores de arrancada em relação ao comando de válvulas. Muitos compram o modelo errado para a utilização em competição de arrancada, por exemplo; um modelo muito utilizado pelos preparadores dos motores de arrancada é o 310 x 320 da Crane, que possui duração a 0.050 de 248 graus na admissão x 258 graus no escapamento, 106 de lobe center. Este comando em particular é feito para circuitos ovais e competições de arrancada em percursos curtos de 201m, sua força atua entre 3800 e 7200 rpm, mas com uma curva de potencia e torque muito aberta, justamente para prover força distribuída nestas faixas de giro, característico de um comando de pista do tipo circuito ou oval. É o mesmo caso dos comandos de válvulas Iskenderian 595-A, que mesmo possuindo uma duração mais generosa (254º a 0.050 em ambas) - atua entre 4000 e 7500 rpm é mais indicado para competições de circuito, mas com um pouco mais de potência para arrancada do que o Crane 310 x 320. Ambos são comandos respeitadíssimos e podem trazer resultados excelentes, mas para um motor de ponta de arrancada é necessária ainda mais duração a 0.050, se possível, acima de 265º a 0.050 e com o lobe center entre 108 e 112 graus (a dica esta lançada). O comando Crower 304 x 310 possui uma característica mais nervosa para competições de arrancada, a 0.050" possul 258º x 264º, 107,5 de lobe center, com uma curva explosiva de potencia acima dos 4500 rpm até os 7000 rpm. Dependendo da preparação, o comando escolhido pode render muito mals, ainda mals se o enquadrarmos corretamente. Por falar em enquadramento, é de grande importância que o preparador leve o carro a um dinamômetro e faça as experiências para ganhar mais potência, sei que no motor 250 isso não é muito simples, mas deixar um jogo de chavetas especiais (deslocadas) com ângulos prontos de 2 e 4 graus, tanto para adiantar como para atrasar pode render bons frutos. Fique atento a posição do pistão no ponto morto superior e analise com o disco graduado a posição do pistão antes de mesmo de funcionar o motor com o comando, checando a posição das válvulas em relação ao PMS.
Para facilitar a sua vida fiz um gráfico para que você escolha melhor o comando de válvulas adequado a preparação necessária para um bom funcionamento do motor, inclusive para que você saiba a melhor opção em termos de desempenho para as suas necessidades, Nas minhas experiências com os motores 250 já cheguei a testar mais de 30 comandos, fique tranqüilo que as indicações são baseadas na experiência, e não só na literatura ou opiniões.
 

Carburadores

Durante nosso primeiro projeto fazendo a preparação do motor 250 o qual testamos diversas preparações (edições 34-36), testamos vários tipos de carburadores na preparação do motor. É bom ficar claro que os carburadores originais, sejam eles 3E, Solex-H34 ou mesmo as DFV446 possuem performance limitada para propostas de preparação acima de 200 cavalos. A não ser que você adquira na Engine um coletor de admissão para trabalhar com 3 destes modelos (iguais), a sim teremos um razoável aumento de performance podendo operar tranqüilamente a até 300 cavalos, inclusive com comandos de válvulas mais nervosos. Não aconselho nenhum destes carburadores citados acima para alimentar isoladamente um motor com um comando de duração superior a 228 graus a 0.050 (utilizando penas uma peça).
Os carburadores Weber e Holley são excelentes para estes motores. Em preparações mais leves até 300 cavalos um único Weber de 44mm ou um Holley de 600 CFM são suficientes para alimentar a criação de cavalos. Para preparações mais fortes é melhor optar por carburadores múltiplos (3 Weber 40, 44, 48, 50 e 55) ou até mesmo um carburador Holley de 700 CFM. Apesar de poucos utilizarem os gigantescos Weber 48 IDA, eu os recomendo para motores de competição. E para os fanáticos por injeção eletrônica, um conjunto de 3 corpos duplos de 50mm a 55mm (motores de competição) ou 45mm (motores de rua) ficam espetaculares.
 

Weber x Holley

Quando comparamos estes carburadores devemos estar atentos a 3 características básicas; Necessidade do motor, fluxo em CFM e o tipo de coletor de admissão utilizado. Não faça conta de CFM / motor; mas sim CFM / cilindro, é ai que a Holley leva vantagem quando a comparamos com até 3 carburadores duplos de 48 mm (Weber IDF). A conta é simples; se temos um conjunto de 3 Weber 40mm, no total elas possuem um total de 1260 CFM, é claro que em uma comparação simples com a Holley 600 CFM o "quadrijet" perderia, mas os carburadores Weber são instalados em coletores divididos (Individual runner), onde um carburador Weber de 40mm que possui 420CFM (dois corpos) alimentam apenas um único cilindro, isto é, temos para cada cilindro 420 CFM seguindo a ordem de explosão 1-5-3-6-2-4. Já o Holley que é instalado em um coletor único para os seis cilindros (single plane), consegue enviar os 600 CFM (sem cálculos de perda) para cada cilindro.
Captou?l
Para um jogo de 3 Weber ter vantagens sobre o Holley as Weber necessitam de pelo menos ter 500 CFM cada uma, e isso só é possível com as Weber 50 - 55 DCOE e 48 IDA. Para uma IDF de 48 mm chegar a isso deverá ser devidamente "trabalhada" gerando CFM acima de 550. Para ser mais claro, os carburadores Weber horizontais com 50 mm fornecem 640 CFM, os 55 entregam 740 CFM (nos dois corpos), daí sim um banho de CFM na Holley, pois se temos 3 x 55 teremos 2220 CFMs para todo o motor e 740 CFM para cada cilindro seguindo a ordem de explosão. A conta a grosso modo é esta, não estamos levando em conta o tempo e a turbulência causada pelo coletor do tipo "pleno" da Holley, que geralmente faz com que só cheguem aos cilindros "das pontas" 90% do fluxo, nem mesmo os 5% que perdemos com a bagunça das divisões do cabeçote e em alguns coletores individuais. Se você esta pensando; se eu instalar um único Weber de 48 mm terei resposta melhor do que com as três... está errado. A posição do carburador somado a longa distancia para atingir os cilindros "das pontas" deixa o único Weber em desvantagem ainda pior, pois o coletor é ingrato. Já o Holley devido ao desenho da base e quando instalado na posição correta possui inúmeras vantagens sobre o único Weber.
 

Cuidados com carburadores gigantes

Colocar carburadores grandes nos motores 250 não é uma tarefa fácil como se pensa, temos quatro problemas graves; O primeiro é em relação à dirigibilidade que é prejudicada, segundo a remoção do hidrovácuo, mas isso pode ser solucionado fazendo pequenas adaptações. O terceiro é a posição dos coletores de escapamento, tudo deve ser pensado a analisado antes da compra. O quarto problema e mais grave é o poder de sucção que os Weber possuem. Para dar um exemplo, quando estava na Stock tínhamos uma sala da 12 metros quadrados com o teto de 2 metros da altura onde estava o dinamômetro, logo quando fizemos os primeiros testes em um motor que eu tinha com 3 Weber 50, se iniciávamos os testes com a porta aberta (a sala ainda não tinha ventilação externa forçada, e sim uma pequena entrada de ar de 1 metro quadrado) o motor rendia bem, ao fecharmos a porta o motor imediatamente acusava excesso, tamanha força de sucção das Weber. Não pense que dentro do cofre de um Opala é igual ou melhor, é muito pior. Para solucionar o problema é primordial a instalação de dutos ou mesmo um "Scoop" para "ventilar" os carburadores em alta rotação / velocidade, a ciência na criação dos dutos ou mesmo da instalação do "Scoop" é complicada para explicar nestas paginas, fica para uma mataria especifica. Sei que você faz careta quando deixo uma continuação para depois, mas a revista também tem que ter mais matérias (risos). O quarto problema é em relação ao "arrasto" necessário para um bom funcionamento do motor nas fases baixas e de médias rotações. Carburadores grandes necessitam de gigantescas proporções de combustível, em um carro de rua isso é simplesmente inviável, no carro de pista sem problema algum.

Coletores de admissão

Para os motores 250 existem modelos variados de coletores e diversos fabricantes no mercado nacional. A gaúcha ENGINE é sem dúvida alguma um dos melhores fabricantes de coletores, tampas e acessórios para o 6 cilindros GM no mundo, e não estou "jogando confetes" porque ele é nosso anunciante, é porque os produtos são muito bem feitos, funcionam e possuem um acabamento muito superior que os importados. É bom ficar claro que todos os coletores podem ser melhorados para atender as necessidades de cada motor em particular, basta ter uma bancada de fluxo e "tirar os pelinhos".

3 Weber para "rua"

Para carros de rua os coletores mais baixos que possuem uma pequena restrição ao fluxo podem ser utilizados sem problemas, inclusive esta mesma curva que causa uma restrição favorece a mistura em baixas e médias rotações, agindo contrariamente aos coletores mais "arrombados".
 

3 Weber para pista

É melhor optar por coletores de maior capacidade e um pouco mais altos e largos que os normalmente encontrados (os baixos no caso de 3 Weber IDF). No caso dos DCOE é simples. A IDA é melhor que a IDF.
 

1 Weber para rua

Jamais faça a adaptação no coletor original, procure um coletor específico e se possível o mais largo possível existente no mercado. Uma excelente dica é utilizar o coletor da Engine, é largo e possui um excelente fluxo.

1 Weber para pista

Podemos dar duas opções, a primeira é comprar o modelo pronto e específico para um único Weber; funciona perfeitamente. A segunda que é cara e extremamente trabalhosa é construir um coletor em alumínio, onde o carburador seja colocado mais distante dos cilindros centrais, procurando equalizar o comprimento dos dutos, funciona uma barbaridade, mas da um trabalho...
 

1 HoIley para rua ou pista

Quem pode acompanhar a matéria sobre o motor 250 que atingimos 350 cavalos no dinamômetro sabe exatamente do que estou falando, a posição do carburador. Originalmente conforme a recomendação do próprio carburador e coletor, a instalação correta da HolIey é com as cubas no sentido paralelo a motor, mas... durante os nossos testes no dinamômetro pudemos ver e aprovar que o carburador montado com a cuba virada para a tampa de válvula rende mais potência em médias e altas rotações. a Engine também fornece um excelente modelo.
 

2 HoIIey para pista

No máximo 550 ou 650 CFM para cada carburador, e ainda assim é exagero. Como não testei não vou comentar... mas estou louco para fazer.




Coletores de escapamento

 
Existem dois sistemas de escapamento, um corretamente dimensionado para a aplicação e que realmente funciona, outro de "prateleira vendido como salame" bem baratinho... que não funciona. Neste caso o barato não presta mesmo. Quando procurar um coletor de escapamento para seu motor preocupe-se com 4 principais assuntos.
1 - O primeiro é em relação a construção e acabamento da flange que liga o coletor ao escape. Coletores descentes não obstruem a saída dos gases logo no cabeçote, acredite ou não já vi cada coisa por aí...
2 - O tipo de curva que é feita nas dobras dos canos; se o cano tiver um angulo muito fechado que cause um esmagamento brusco já era, causa turbulência e restrição dos gases. Esmagamentos mínimos podem ate passar dependendo de cada caso. Fique de olho nas saídas da flange em relação aos tubos, a qualidade da solda e principalmente se os tubos são Livres sem curvas fechadas esmagadas ou mesmo obstruindo a passagem dos gases.
3 - O comprimento de cada tubo. Apesar de gerar uma discussão longa sobre escapamentos, se tivermos todos os 6 tubos dobrados com os mesmos ângulos e com o mesmo comprimento de cada um teremos muito mais vantagens do que um coletor "complicado”.
4 - Nada dá mais potencia do que o sistema livre. A união dos tubos dos coletores deve ser "gêmea" e uniforme, reduzindo o diâmetro para 2,5 polegadas nos modelos para rua e se possível com 3 polegadas nos modelos de pista.

Recomendações para os sistemas de coletores:

Coletores com tubos mais curtos estreitam a faixa de torque e potência ressaltando em um pico máximo bem limitado, assim como os coletores com tubos mais longos ampliam a faixa do torque e potencia, mas perdem potencia em relação ao pico máximo onde é atingida. Isso deve ser analisado no dinamômetro em cada tipo de preparação, mas posso afirmar que a base é essa. Motores de rua ficam melhores com tubos mais longos para aproveitar a faixa ampla de torque de um comando mais manso. Eu particularmente gosto dos coletores feitos pela German e do Dudu.

Diâmetro dos pistões

Os motores 250 são equipados com pistões de 98,4 mm de diâmetro, nos motores a álcool podemos encontrar os pistões com um pequeno ressalto (circular) na cabeça do pistão. já nos motores a gasolina os pistões são côncavos. um veneno básico e que realmente funciona é instalar os pistões de 101.7 mm do motor GM 151 de quatro cilindros, elevando a cilindrada de 4093 cc para 4371 cc, o que resulta em ganhos excelentes. No dinamômetro em meus testes antigos tínhamos um motor original a gasolina com 127 hp a 3800 rpm e com 24,4 kgfm de torque a 2200 rpm, com a instalação dos pistões de 4 polegadas e o aumento da taxa de compressão para 12,5:1 fazendo as devidas calibragens chegamos a 166 hp e mais de 31 kgfm de torque. Isso com o comando de válvulas original do modelo 4100. Com o comando do 250-S e tuchos mecânicos a potencia saltou para 183 hp, agora a 4600 rpm.
 

Motores aspirados de baixo custo (rua e pista):

A recomendação é mais do que obvia, os pistões Metal Leve de 4 polegadas do motor 4 cilindros a álcool (cabeça plana). Não tente comprar os pistões com medidas superiores ao STD, pois a camisa não possui parede suficiente para admitir a não ser que você possua camisas forjadas (Romac) podendo aumentar o dia metro para até 102.4 mm (pistões e anéis sob encomenda), ou um pouco mais dependendo da solicitação da camisa e do trabalho no bloco.
 

Motores aspirados de pista (Pro):

Forjados e do tipo cabeçudos. Alguns fabricantes disponibilizam modelos já prontos, inclusive com as cavas de válvulas. Ou ainda os 4 polegadas com cabeça plana ou cabeçudos que são feitos sob encomenda (depende de cada projeto).
 

Motores nitro, nitrometano ou turbo:

Forjados com cabeça plana ou convexa dependendo da aplicação não utilizar pistões com diâmetro superior a 100 mm e de preferência a utilização de camisas forjadas.
 
Dica 1: Jamais faca o brunimento dos cilindros sem utilizar uma placa de torque (torque plate) no bloco. A placa de torque simula a tração que o cabeçote dá quando ajustado, e se você nunca mediu a diferença ou mesmo utilizou uma placa de torque em um motor de alto desempenho já está na hora de rever seus conceitos, a diferença é espantosa. E se você e um perfeccionista como eu que faço isso em TODOS os meus motores, aqueça o bloco a 70 graus em óleo quente e deixem também fixados e torqueados todos os mancais do virabrequim. Aproveite e sente em uma cadeira para não cair de costas quando ver a diferença nas medidas.
Dica 2: Anéis O'ring são obrigatórios. .7 de cava para um cabo de cobre de 1 mm.
 

Curso do virabrequim:

Agora é a hora, tem gente que vai chiar um bocado com isso. A maneira mais fácil de conseguir um ganho de potencia e torque é aumentando a cilindrada. Nos motores V8 ou mesmo nos 4 cilindros instalar um virabrequim de curso maior fica perfeitamente aceitável e quase não temos limites para isso salvo algumas orientações e modelos. Já na enorme “salsicha" do 6 cilindros em linha temos alguns problemas relacionados ao "clock" do motor, isto é, dependendo do aumento do curso do virabrequim devemos modificar completamente o comando de válvulas, e não estou dizendo no simples enquadramento, mas sim na posição de abertura e fechamento de cada ciclo para conseguir deixar o “relógio” do motor adequado ao novo gigantesco curso do virabrequim. O que acarreta isso é simples, o motor não funciona corretamente em seus ciclos, perdendo desempenho e principalmente rotações. Como isso é um assunto demasiadamente longo e complexo, necessitarei de muito mais espaço do que infelizmente tenho nesta matéria, deixo também para uma matéria próxima. Mas só para dar urna dica, virabrequim com curso superior a 92 mm no GM 250 já apresenta problemas de "clock" e deve ser analisado corretamente, inclusive optando por bielas maiores. O virabrequim original do Opala é excelente em termos de construção, pode suportar com tranqüilidade potencias superiores a 700 cavalos, seu único problema e em relação a ressonância existente entre 4800 rpm a 5800 rpm, só o balanceamento perfeito pode corrigir p problema. Não se esqueça da polia dianteira do virabrequim, o uso do "Damper" (polia harmônica) é obrigatório em qualquer motor de alta performance.
 

Bielas

De preferência para as bielas de 6 polegadas, e se o virabrequim possuir curso longo talvez seja necessário um jogo de bielas ainda maiores, mas isso deve ser estudado caso a caso, principalmente na necessidade de pistões com os pinos centralizados. Bielas originais: Podem ser utilizadas em preparações básicas de até 370 cavalos sem problemas, contando que o giro máximo não seja superior a 6800 rpm, em um virabrequim de curso original e todas as bielas devem ser balanceadas exaustivamente. Tudo isso para motores naturalmente aspirados.
Bielas Forjadas 4340: Motores aspirados que giram acima de 7000 rpm e/ou que possuam virabrequim de curso e um equipamento obrigatório. Já vi motores com mais de 900 cavalos (turbo) utilizando bielas forjadas sem problemas
Bielas de forjadas de Alumínio: A vantagem é somente sobre o peso, que é muito menor que uma biela forjada ou mesmo a original. Sé é indicada para motores de competição de arrancada, jamais utilize este tipo de biela em um motor de rua, pois não aceitam bem acelerações e desacelerações constantes. Lembre-se, uso exclusivo em motores de competição de arrancada só traz vantagens.
Bielas de forjadas de Titânio: Quase o peso do alumínio com a vantagem da super resistência em todos os aspectos, é a melhor biela para qualquer tipo de aplicação. O único problema é o preço, 1.500,00 reais "cada".

NA PONTA DO LAPÍS

Preparação de rua básica, barata e que funciona:

1 - Taxa de compressão de 12,5:1 1 - Preparação leve do cabeçote, com válvulas maiores, acerto de molas, banco de fluxo. 1 - Carburador Holley 600 CFM 1 - Coletor de admissão Engine 1 - Coletor de escapamento dimensionado German 1 - Comando Isky 525-B (mec) ou Crower 03311 6 (mec) , Erson E160001 (hid) 2 - Jogos de pistões 4 polegadas com anéis. 1 - Jogo de válvulas de admissão do Chevrolet Brasil 1 - Bomba elétrica de combustível e dosador 1 - Limitador de giros 1 - Montagem, retifica e acerto profissional.
- Valor total estimado: R$ 10.000,00 reais - Potencia: Entre 320 a 350 cavalos - Faixa de potencia: Entre 2500 a 6000 rpm - Durabilidade: Acima de 100.000 km' - Utilização em transito: Embaralha até 1.800 rpm - Faixa de utilização estrada: acima de 2200 o motor é limpo e liso. - Combustível: Álcool. - Consumo cidade: Entre 2,5 a 3,5 km/I - Consumo estrada a 110 Km/h: acima de 5 km/I conscientemente. - Lubrificante obrigatório: Óleo sintético - Relação de diferencial recomendado: 3.07 para quem viaja com o carro. Só para rua ou competições esporádicas 3.54, todos com auto-blocante. - Aceleração 0-100 km/h (carroceria 77 com diferencial 3.54): 6 segundos (pro) - Velocidade máxima (carroceria 77 com diferencial 3.07): acima de 230km/h - Opcionais “obrigatórios”: Trabalho na suspensão com amortecedores especiais e buchas rígidas. Freios a disco ventilado nas 4 rodas. (3.500,00). Cambio de Dodge (3.000,00) + embreagem especial (1.200,00). - O menor problema: Não querer mais sair do carro. - O maior problema: O carro não ser o seu.
Fonte: Revista AutoPower – Ano 05 – N. 49

PREPARAÇÃO LEVE PARA MOTOR 4 CILINDROS



Uma receita para deixar o Motor 4 do Opala mais ageis e aumentar sua potência sem que seja necessário grande gasto financeiro.

Para deixar o Motor 151 4cc do Opala envenenado basta ir reparando os erros que a General Motors teve preguiça e economia de dinheiro de corrigir. Dá para se ganhar muita potência nos motores 4 e 6 cilindros, sem gastar uma fortuna. A idéia inicial, é copiar ao máximo as motos japonesas de 4cil, desde escape admissão, pistões, carburadores e afins.
Coletor 4x2 Opala, Valor médio no ML, R$ 360,00

Coletor de Escape

Uma peça tão mal projetada que quando expele gás por uma porta, os mesmos acabam voltando e entrando no outro duto, e vice versa, provocando essa troca pouco eficiente de gases.
Um coletor 4x2 alivia muito o motor, é como tirar a coleira de um pitbull com fome.
Ha quem goste do conjunto 4 x 2 x 1 + abafador + ponteira. O usado aqui é o 4×2 direto até o fim, com duas ponteiras separadas. Sem contar que dá outro som no motor.
Outro aspecto a ser melhorado é o Peso das Peças do Motor. Normalmente elas são muito pesadas, o que demanda muita energia apenas pra movimenta-las. No chevete 1.6/s, por exemplo, peças como Bielas, Pistões, Contrapesos do Virabrequim e Volante tiveram seus pesos aliviados, gerando um ganho substancial de potência e torque, além de redução no consumo.
Kit KS pistões + aneis + pinos, valor médio R$ 350,00 (novo)
Para aliviar o peso das peças do Opala, a ajuda não virá só do seu bolso ou da Retífica, mas principalmente das leis da física. São precisos muitos cálculos e não apenas passar a lixa no virabrequim e por pra rodar. É muito comum em algumas Tornearias, o Virabrequim ser limado – literalmente – e , depois de montado, o Motor simplesmente trincar por inteiro, não sobrando uma peça inteira intacta.
O que pode ser feito em um 4 cilindros é uma correção da fábrica, com umas gotinhas de pimenta pra ter um ganho elevado de potência. O primeiro passo é a troca de Pistões, dos Côncavos, para os “retos” Cabeça Chata, orginalmente usados nos opalas a alcool.

Com os Pistões Retos a compressão passa para 9,0:1/9,5:1"

Isso aumentará a compressão, sem precisar rebaixar o Cabeçote. Salvo o engano, o motor a gasolina tem 7,5:1 de compressão, mas, com os pistões retos, passa para uns 9,0:1/9,5:1. Estes números são suficientes para queimar todo álcool que vem misturado em nossa Gasolina. Apenas substituindo os pistões (mas pode-se retificar o bloco todo) já se ganhou alguns cavalos pro 151.

Segundo passo

não muito importante, mas pode ajudar, é o Polimento dos Dutos de Admissão e Escape, você mesmo pode fazer o serviço com uma retifica pequena (dremel e afins), uma lima rotativa comprida, e muita força de vontade.
O Coletor do Opala 4cc não é ruim, bem melhor do que o 6cil por não injetar 80% no centro e 10% em cada extremidade do cabeçote.
Pode ser melhorado também com um polimento, ou até com outro coletor mais comprido. Pode se usar 2 Carburadores S.U ou duas Solex 40, em coletores individuais. Nada junto, pois o motor puxa o vácuo um do outro e isso atrapalha a carburação.
Em coletores separados, o motor divide-se em 2 e trabalha como se fosse duas unidades juntas. Veja bem qual é o Giclê do seu carburador para a compressão adequada do seu motor. Não vá enfiando qualquer um, isso pode ser uma arma. Um Giclê errado derrete os pistões e deforma as camisas.

Ignição Eletrônica

Esta é uma boa opção para se ganhar potência também. não que seja melhor, mas ela aguenta Bobinas mais fortes.
kit ignição eletrônica opala 4, preço médio R$ 250,00 (novo) Veja lista

Bobina do Gol MI

Uma opção bem econômica e funcional, é muito boa e barata.
bobina do Gol MI, preço médio R$ 99,00 (nova) Veja lista

Bobinas MSD

Caso queira gastar um pouco mais pode-se usar uma MSD.
bobinas MSD, preço médio R$ 250,00 (nova) Veja lista

Velas

pode utilizar as normais “NKG”. Nada de especial. Valor médio R$ 7,00 (cada)

Cabos de Velas

Cabos de 8.8mm se só encontrar carissimos, use de 8.0mm. Valor médio R$ 80,00 (jogo novo)
É importante ressaltar quê:No motor onde foi usada esta receita foram feitas as Sedes de Válvulas para restaurar a compressão. Camisas foram abertas para receber os novos Pistões e anéis novos. Foi dado um passe no Virabrequim de 0.10 pra 0.20, com Bronzinas de Biela e Mancal novas. Muito importante também é o Banho Químico, para limpar todas as galerias de óleo internas.
Depois de tudo isso, é necessário uma Bomba de óleo nova (R$ 90,00).
Bomba d’água também (R$ 70,00), se estiver muito ruim , deve se medir a distância das aletas até o corpo da bomba.

Um segredo descoberto há poucos dias, foi substituir a famosa “Gaxeta” por um retentor da Fel-Pro – importado – que não é bem um retentor, é uma borracha que vai no lugar da gaxeta. Este retentor importado evita que o carro fique babando óleo sem parar. O preço é salgado, mas nisso já se ganha uns 2cv, pois as gaxetas travam demais o motor.
Valor médio R$ 90,00

Ventilação do Radiador

Este sistema ganha 2cv, com certeza é a inclusão de uma Ventoinha Elétrica.
Câmbio e Diferencial não foram trocados nesta receita e mesmo assim houve se um ganho enorme de potência com simples mudanças e que custam bem menos do que muitas receitas vistas em Revistas Epsecializadas.

Matéria retirada do site opalass.com.br

DOWNLOAD

FOTOS DE OPALAS


Opala Diplomata
Opala Diplomata SE 1992 preto
Opalas
Opala Diplomata SE 1992 verde
Opala Diplomata SE 1992 Preto
Opala Diplomata 91 turbo
Opala Diplomata 92
Opala Diplomata SE 1992 azul
Dois Opalas Diplomata SE 1992
Opala Diplomata SE 1992 azul claro
Opala
Opala Diplomata SE 1992 azul
Opala Diplomata SE 1992 azul
Opala Diplomata SE 1992 vinho
Opala Diplomata SE azul 1992
Opala Diplomata SE 1992 vinho
Opala Diplomata rebaixado socado no chão
Opala Diplomata SE 1992 no encontro de opalas
Opala Diplomata branco perolizado
Opala Diplomata SE preto
Opala Diplomata rebaixado
Opala Diplomata preto
Opala Diplomata com rodas de BMW
Opala Diplomata preto
Opala Diplomata cinza de 2 portas
Opala Diplomata preto
Opala Diplomata marrom
Opala Diplomata prata
Opala Diplomata rebaixado com rodão
Opala Diplomata 2 portas com rodão
Opala 2 portas azul
Opala Comodoro 2 portas amarelo metálico
Opala 2 portas azul metálico
Opala Comodoro 2 portas azul
Opala 2 portas marrom metálico
Opala 2 portas prata
Opala 2 portas preto
Opala rebaixado de 2 portas vermelho
Opala 2 portas vermelho com teto de vinil
Opala Standard 80 250-S
Opala 2 portas bege com teto de vinil

Opala antigo de 4 portas cinza com rodas de liga leve


Opala antigo de 4 portas azul com teto de vinil
Opala antigo de 4 portas marrom
Opala antigo comodoro de 2 portas bege com teto de vinil
Opala antigo de 4 portas cinza com rodas de liga leve
Opala antigo azul metálico com rodão
Opala antigo de 2 portas verde
Opala antigo de 4 portas azul com teto de vinil
Opala antigo cinza e preto
Opala antigo de 4 portas amarelo
Opala antigo vermelho com teto bege
Opala Especial 76 250-S
Opala antigo de 4 portas azul com teto de vinil visto de trás
Opala antigo branco com teto de vinil preto
Opala antigo azul claro
Opala SS antigo vermelho
Opala antigo de 4 portas amarelo
Opala antigo azul claro original
Opala antigo azul com teto de vinil preto
Opala antigo de 4 portas branco
Opala antigo vermelho com rodão
Opala antigo verde claro
Opala antigo de 2 portas amarelo
Opala antigo bege de 4 portas
Opala Gran Luxo 73
Opala antigo de 4 portas laranja
Dois Opalas antigos SS
Opala antigo branco em alta velocidade
Opala antigo vermelho rebaixado
Opala antigo bege com teto preto
Opala antigo azul metálico com rodão
Opala antigo marrom com teto de vinil e rodas do diplomata 92
Opala antigo verde
Opala antigo branco
Opala antigo de 2 portas bege metálico
Opala antigo vermelho
Opalão antigo marrom muito doido
Opala antigo de 4 portas vermelho rebaixado
Opala antigo preto
Opala antigo de 2 portas verde
Opala antigo vermelho
Opala antigo de 4 portas vinho
Opala antigo original laranja
Opala antigo rebaixado socado no chão